ESTRO 2024 - Abstract Book
S4530
Physics - Machine learning models and clinical applications
ESTRO 2024
Keywords: Glioma, Prognosis, Pseudoprogression
References:
[1] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. 2020.
[2] Baid U, Ghodasara S, Bilello M, et al. The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification. arXiv pre-print server. 2021.
[3] Menze BH, Jakab A, Bauer S, et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging. 2015; 34(10):1993-2024.
[4] Bakas S, Akbari H, Sotiras A, et al. Advancing the Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data. 2017; 4(1):170117.
[5] Bakas S, Sako C, Akbari H, et al. The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: Advanced MRI, clinical, genomics, & radiomics. Scientific data. 2022; 9(1):453.
[6] Akbari, Hamed, et al. "Histopathology ‐ validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo ‐ progression in glioblastoma." Cancer 126.11 (2020): 2625-2636.
2287
Proffered Paper
Made with FlippingBook - Online Brochure Maker