ESTRO meets Asia 2024 - Abstract Book

S140

Interdisciplinary – Gynaecological

ESTRO meets Asia 2024

[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394 424. [2] WANG W, ZHANG F, HU K, et al. Image-guided, intensity-modulated radiation therapy in definitive radiotherapy for 1433 patients with cervical cancer [J]. Gynecol Oncol, 2018, 151(3): 444-8. [3] CHOPRA S G S, KANNAN S, DORA T, ENGINEER R. Late Toxicity After Adjuvant Conventional Radiation Versus Image-Guided Intensity-Modulated Radiotherapy for Cervical Cancer (PARCER): A Randomized Controlled Trial [J]. J Clin Oncol 2021, 20;39(33):3682-3692. [4] AHMAD R, HOOGEMAN M S, BONDAR M, et al. Increasing treatment accuracy for cervical cancer patients using correlations between bladder-filling change and cervix-uterus displacements: proof of principle [J]. Radiother Oncol, 2011, 98(3): 340-6. [5] BONDAR L, HOOGEMAN M, MENS J W, et al. Toward an individualized target motion management for IMRT of cervical cancer based on model-predicted cervix-uterus shape and position [J]. Radiother Oncol, 2011, 99(2): 240-5. [6] VAN DE BUNT L, VAN DER HEIDE U A, KETELAARS M, et al. Conventional, conformal, and intensity modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: The impact of tumor regression [J]. International Journal of Radiation Oncology*Biology*Physics, 2006, 64(1): 189-96. [7] BEADLE B M, JHINGRAN A, SALEHPOUR M, et al. Cervix regression and motion during the course of external beam chemoradiation for cervical cancer [J]. Int J Radiat Oncol Biol Phys, 2009, 73(1): 235-41. [8] LIM K, SMALL W, JR., PORTELANCE L, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer [J]. Int J Radiat Oncol Biol Phys, 2011, 79(2): 348-55. [9] TYAGI N, LEWIS J H, YASHAR C M, et al. Daily online cone beam computed tomography to assess interfractional motion in patients with intact cervical cancer [J]. Int J Radiat Oncol Biol Phys, 2011, 80(1): 273-80. [10] SHIH K K, MILGROM S A, ABU-RUSTUM N R, et al. Postoperative pelvic intensity-modulated radiotherapy in high risk endometrial cancer [J]. Gynecol Oncol, 2013, 128(3): 535-9. [11] ZENG Z, WANG W, LIU X, et al. Optimal cisplatin cycles in locally advanced cervical carcinoma patients treated with concurrent chemoradiotherapy [J]. Clin Transl Oncol, 2023, 25 (10): 2892-2900. [12] WANG W, LIU X, MENG Q, et al. Nomogram for predicting para-aortic lymph node metastases in patients with cervical cancer [J]. Arch Gynecol Obstet, 2018, 298(2): 381-8. [13] PATEL E, TSANG Y, BAKER A, et al. Quality assuring "Plan of the day" selection in a multicentre adaptive bladder trial: Implementation of a pre-accrual IGRT guidance and assessment module [J]. Clin Transl Radiat Oncol, 2019, 19: 27-32. [14] CHAN P, DINNIWELL R, HAIDER M A, et al. Inter- and intrafractional tumor and organ movement in patients with cervical cancer undergoing radiotherapy: a cinematic-MRI point-of-interest study [J]. Int J Radiat Oncol Biol Phys, 2008, 70(5): 1507-15. [15] BARNEY B M, LEE R J, HANDRAHAN D, et al. Image-guided radiotherapy (IGRT) for prostate cancer comparing kV imaging of fiducial markers with cone beam computed tomography (CBCT) [J]. Int J Radiat Oncol Biol Phys, 2011, 80(1): 301-5. [16] MAHANTSHETTY U, NAGA P, NACHANKAR A, et al. Set-Up Errors, Organ Motion, Tumour Regression and its Implications on Internal Target Volume-Planning Target Volume During Cervical Cancer Radiotherapy: Results From a Prospective Study [J]. Clin Oncol (R Coll Radiol), 2022, 34(3): 189-97. [17] LANGERAK T, MENS J W, QUINT S, et al. Cervix Motion in 50 Cervical Cancer Patients Assessed by Daily Cone Beam Computed Tomographic Imaging of a New Type of Marker [J]. Int J Radiat Oncol Biol Phys, 2015, 93(3): 532-9. [18] YANG B, CHANG Y, LIANG Y, et al. A Comparison Study Between CNN-Based Deformed Planning CT and CycleGAN-Based Synthetic CT Methods for Improving iCBCT Image Quality [J]. Front Oncol, 2022, 12: 896795. [19] MASLOWSKI A, WANG A, SUN M, et al. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation [J]. Med Phys, 2018, 45(5): 1899-913. [20] RíOS I, VáSQUEZ I, CUERVO E, et al. Problems and solutions in IGRT for cervical cancer [J]. Reports of Practical Oncology & Radiotherapy, 2018, 23(6): 517-27.

Made with FlippingBook flipbook maker